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1 Spectral theorem and diagonalization

Theorem 1. Let A be a real, symmetric matriz (or, in the complex case, a self-adjoint matriz). Then there exist D a
real diagonal matriz and P an orthogonal (unitary) matriz such that A = PDP*.

Theorem 2. If A is an n X n matriz with n distinct eigenvalues, then A is diagonalizable.

1.1 Powers of matrices

The idea here is to take advantage of the fact that if a matrix A can be written as PDP~! then its powers are given by
AF = PD*P~1 the powers of a diagonal matrices being easy to compute.

Problem 1. Let T be an N X N real symmetric matriz. Show that
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if and only if all the eigenvalues of T have absolute value less than 1.

Problem 2 (Berkeley 1990). Let A be a real symmetric n x n matriz that is positive definite. Let y € RN, y # 0. Prove
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exists and is an eigenvalue of A.

1.2 Linear recurrences

A linear recurrence with constant coefficients
An+2 = aAn+1 + bAn

can be transformed into a linear system by introducing the artificial sequence B, 12 = A, 11, giving
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Problem 3. Show that if a®> + 4b > 0 there exist constants «, B such that the solution to the linear recurrence above is

given by
A, = al] + BNy,

where A1 and Ay are the eigenvalues of some matriz.

Problem 4. Prove the Binet formula for the Fibonacci sequence 0,1,1,2,...:
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Problem 5. Find all sequences satisfying fpny2 = 5fny1 +6fn + 27

Problem 6 (Putnam 2018). Given a real number a, we define a sequence by xo = 1, 1 = 2 = a, and Tpy; =
2T Tp—1 — Tn—g for n > 2. Prove that, if xty =0 for some N, then the sequence is periodic. (Hint: Show that we must
have |a| <1 and show that x,, = cos(ypb) ).



1.3 Courant-Fischer min-max theorem

Theorem 3. Let A be a real symmetric matrixz and note Ay, Ao, ..., A, its eigenvalues. Then we have
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In particular we have that
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where the left and right inequalities are obtained exactly when z is an eigenvector corresponding to A,.in and Apaz,
respectively (prove it as an exercise).

Problem 7 (OBM 2004). Let X be a real invertible n x n matriz and X7 its transposed. Let A1, Ao, ..., A\ > 0 the
eigenvalues of XTX. We define the norm of X by || X|| = /A1 and the dilation factor of A by d(X) = i—; Show that,

for any A and B invertible, d(AB) > ”%ﬁg”d(B).
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Problem 8. Prove the eigenvalue stability inequality |A\;(A+ B) — A\i(A)| < ||Bllop, where we define the norm ||M||op =
SUPp =1 | Mx|.

Problem 9 (Berkeley 1992). Let A be a real symmetric n X n matriz with non-negative entries. Prove that A has an
etgenvector with non-negative entries.

2 Polar Decomposition

Any complex number z = a + bi can be put in the polar form z = re’?, where r > 0 and |¢¢| = 1. Here we will see the
generalization of this fact to square matrices, where a symmetric matrix takes the role of the r and a unitary matrix acts
as the phase factor.

Theorem 4. Any square matriz A over R (or C) can be represented in the form A = SU, where S is a symmelric
(Hermitian) non-negative definite matriz and U is an orthogonal (unitary) matriz. If A is invertible such a representation
1S unique.

Problem 10. Prove that S is always uniquely defined, S =V AA*.

Problem 11. Prove that any square matriz can be decomposed as A = U'S’, where S’ is a symmetric non-negative
definite matriz and U’ is an orthogonal (unitary) matriz. (Note that we don’t have (in general) U' = U and S’ = S.)

Problem 12. Prove that if A is invertible and A = S1U; = UySs, where S; are symmetric and U; are unitary, then
U, = Us.

Problem 13. Prove that if the polar decomposition of a square matriz A is unique then A must be invertible.
Problem 14. Prove that if U is a unitary matriz and S > 0, then |[tr(US)| < trS and if A is invertible, then U = €*“1,

for some ¢ € R.

Problem 15. Let A = SU be the polar decomposition of A and W a unitary matriz. Then ||[A —Ull2 < ||A — W||2 and
if A is invertible, then the equality is only attained for W = U (Use the result from Problem 14 above). We recall that
the L? euclidean norm of a matriz A is ||Alja = \/tr(A*A).

Problem 16. Prove that if A is a normal operator (that is, AA* = A*A) and A = SU is its polar decomposition then
SU=US.

2.1 Singular value decomposition

The matrix S in the polar decomposition, being itself a symmetric matrix, can be further decomposed as S = PDP*
using the spectral theorem. Since S > 0, it follows that the eigenvalues in the diagonal matrix D are non-negative. This
way, there exists two orthogonal (unitary) matrices P and @ such that A can be ”almost diagonalized” as A = PDQ.
The elements in the diagonal D are called the singular values of A, and this is called the singular value decomposition.

Problem 17. If A is an n X n normal matriz, show that the singular values o1(A),...,0,(A) of A are the absolute
values of its eigenvalues: |A1(A)l, ..., [\ (4)].

Problem 18. Prove the Courant-Fischer min-max formula for singular values:
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for all 1 < i < p, where the supremum ranges over all subspaces of C™ of dimension i.



