Lecture 2

Paulo Sampaio

February 15, 2024

1 Spectral theorem and diagonalization

Theorem 1. Let A be a real, symmetric matrix (or, in the complex case, a self-adjoint matrix). Then there exist D a real diagonal matrix and P an orthogonal (unitary) matrix such that $A = PDP^*$.

Theorem 2. If A is an $n \times n$ matrix with n distinct eigenvalues, then A is diagonalizable.

1.1 Powers of matrices

The idea here is to take advantage of the fact that if a matrix A can be written as PDP^{-1} then its powers are given by $A^k = PD^kP^{-1}$, the powers of a diagonal matrices being easy to compute.

Problem 1. Let T be an $N \times N$ real symmetric matrix. Show that

$$\lim_{n \to \infty} T^n = 0$$

if and only if all the eigenvalues of T have absolute value less than 1.

Problem 2 (Berkeley 1990). Let A be a real symmetric $n \times n$ matrix that is positive definite. Let $y \in \mathbb{R}^N$, $y \neq 0$. Prove that the limit

 $\lim_{m \to \infty} \frac{y^T A^{m+1} y}{y^T A^m y}$

exists and is an eigenvalue of A.

1.2 Linear recurrences

A linear recurrence with constant coefficients

$$A_{n+2} = aA_{n+1} + bA_n$$

can be transformed into a linear system by introducing the artificial sequence $B_{n+2} = A_{n+1}$, giving

$$\begin{cases} A_{n+2} = aA_{n+1} + bB_{n+1} \\ B_{n+2} = A_{n+1} \end{cases} \implies \begin{pmatrix} A_{n+2} \\ B_{n+2} \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} A_{n+1} \\ B_{n+1} \end{pmatrix}$$

Problem 3. Show that if $a^2 + 4b > 0$ there exist constants α , β such that the solution to the linear recurrence above is given by

$$A_n = \alpha \lambda_1^n + \beta \lambda_2^n,$$

where λ_1 and λ_2 are the eigenvalues of some matrix.

Problem 4. Prove the Binet formula for the Fibonacci sequence $0, 1, 1, 2, \ldots$:

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

Problem 5. Find all sequences satisfying $f_{n+2} = 5f_{n+1} + 6f_n + 2^n$

Problem 6 (Putnam 2018). Given a real number a, we define a sequence by $x_0 = 1$, $x_1 = x_2 = a$, and $x_{n+1} = 2x_nx_{n-1} - x_{n-2}$ for $n \ge 2$. Prove that, if $x_N = 0$ for some N, then the sequence is periodic. (Hint: Show that we must have $|a| \le 1$ and show that $x_n = \cos(y_n b)$).

1

1.3 Courant-Fischer min-max theorem

Theorem 3. Let A be a real symmetric matrix and note $\lambda_1, \lambda_2, \ldots, \lambda_n$ its eigenvalues. Then we have

$$\lambda_k = \min_{\dim S = n - k + 1} \left(\max_{x \in S} \frac{\langle Ax, x \rangle}{\langle x, x \rangle} \right)$$

In particular we have that

$$\lambda_{min} \le \frac{\langle Ax, x \rangle}{\langle x, x \rangle} \le \lambda_{max},$$

where the left and right inequalities are obtained exactly when x is an eigenvector corresponding to λ_{min} and λ_{max} , respectively (prove it as an exercise).

Problem 7 (OBM 2004). Let X be a real invertible $n \times n$ matrix and X^T its transposed. Let $\lambda_1, \lambda_2, \ldots, \lambda_n \geq 0$ the eigenvalues of X^TX . We define the norm of X by $||X|| = \sqrt{\lambda_1}$ and the dilation factor of A by $d(X) = \sqrt{\frac{\lambda_1}{\lambda_2}}$. Show that, for any A and B invertible, $d(AB) \geq \frac{||AB||}{||A|||B||} d(B)$.

Problem 8. Prove the eigenvalue stability inequality $|\lambda_i(A+B) - \lambda_i(A)| \le ||B||_{op}$, where we define the norm $||M||_{op} = \sup_{|x|=1} |Mx|$.

Problem 9 (Berkeley 1992). Let A be a real symmetric $n \times n$ matrix with non-negative entries. Prove that A has an eigenvector with non-negative entries.

2 Polar Decomposition

Any complex number z = a + bi can be put in the polar form $z = re^{i\varphi}$, where $r \ge 0$ and $|e^{i\varphi}| = 1$. Here we will see the generalization of this fact to square matrices, where a symmetric matrix takes the role of the r and a unitary matrix acts as the phase factor.

Theorem 4. Any square matrix A over \mathbb{R} (or \mathbb{C}) can be represented in the form A = SU, where S is a symmetric (Hermitian) non-negative definite matrix and U is an orthogonal (unitary) matrix. If A is invertible such a representation is unique.

Problem 10. Prove that S is always uniquely defined, $S = \sqrt{AA^*}$.

Problem 11. Prove that any square matrix can be decomposed as A = U'S', where S' is a symmetric non-negative definite matrix and U' is an orthogonal (unitary) matrix. (Note that we don't have (in general) U' = U and S' = S.)

Problem 12. Prove that if A is invertible and $A = S_1U_1 = U_2S_2$, where S_i are symmetric and U_i are unitary, then $U_1 = U_2$.

Problem 13. Prove that if the polar decomposition of a square matrix A is unique then A must be invertible.

Problem 14. Prove that if U is a unitary matrix and $S \ge 0$, then $|tr(US)| \le trS$ and if A is invertible, then $U = e^{i\varphi}I$, for some $\varphi \in \mathbb{R}$.

Problem 15. Let A = SU be the polar decomposition of A and W a unitary matrix. Then $||A - U||_2 \le ||A - W||_2$ and if A is invertible, then the equality is only attained for W = U (Use the result from Problem 14 above). We recall that the L^2 euclidean norm of a matrix A is $||A||_2 = \sqrt{tr(A^*A)}$.

Problem 16. Prove that if A is a normal operator (that is, $AA^* = A^*A$) and A = SU is its polar decomposition then SU = US.

2.1 Singular value decomposition

The matrix S in the polar decomposition, being itself a symmetric matrix, can be further decomposed as $S = PDP^*$ using the spectral theorem. Since $S \ge 0$, it follows that the eigenvalues in the diagonal matrix D are non-negative. This way, there exists two orthogonal (unitary) matrices P and Q such that A can be "almost diagonalized" as A = PDQ. The elements in the diagonal D are called the *singular values* of A, and this is called the *singular value decomposition*.

Problem 17. If A is an $n \times n$ normal matrix, show that the singular values $\sigma_1(A), \ldots, \sigma_n(A)$ of A are the absolute values of its eigenvalues: $|\lambda_1(A)|, \ldots, |\lambda_n(A)|$.

Problem 18. Prove the Courant-Fischer min-max formula for singular values:

$$\sigma_i(A) = \inf_{\dim(S)=n-i+1} \left(\sup_{x \in S} \frac{|Av|}{|v|} \right)$$

for all $1 \leq i \leq p$, where the supremum ranges over all subspaces of \mathbb{C}^n of dimension i.