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1 Spectral theorem and diagonalization

Theorem 1. Let A be a real, symmetric matrix (or, in the complex case, a self-adjoint matrix). Then there exist D a
real diagonal matrix and P an orthogonal (unitary) matrix such that A = PDP ∗.

Theorem 2. If A is an n× n matrix with n distinct eigenvalues, then A is diagonalizable.

1.1 Powers of matrices

The idea here is to take advantage of the fact that if a matrix A can be written as PDP−1 then its powers are given by
Ak = PDkP−1, the powers of a diagonal matrices being easy to compute.

Problem 1. Let T be an N ×N real symmetric matrix. Show that

lim
n→∞

Tn = 0

if and only if all the eigenvalues of T have absolute value less than 1.

Problem 2 (Berkeley 1990). Let A be a real symmetric n× n matrix that is positive definite. Let y ∈ RN , y 6= 0. Prove
that the limit

lim
m→∞

yTAm+1y

yTAmy

exists and is an eigenvalue of A.

1.2 Linear recurrences

A linear recurrence with constant coefficients

An+2 = aAn+1 + bAn

can be transformed into a linear system by introducing the artificial sequence Bn+2 = An+1, giving{
An+2 = aAn+1 + bBn+1

Bn+2 = An+1

=⇒
(
An+2

Bn+2

)
=

(
a b
1 0

)(
An+1

Bn+1

)
Problem 3. Show that if a2 + 4b > 0 there exist constants α, β such that the solution to the linear recurrence above is
given by

An = αλn1 + βλn2 ,

where λ1 and λ2 are the eigenvalues of some matrix.

Problem 4. Prove the Binet formula for the Fibonacci sequence 0, 1, 1, 2, . . . :

Fn =
1√
5

(
1 +
√

5

2

)n
− 1√

5

(
1−
√

5

2

)n
.

Problem 5. Find all sequences satisfying fn+2 = 5fn+1 + 6fn + 2n

Problem 6 (Putnam 2018). Given a real number a, we define a sequence by x0 = 1, x1 = x2 = a, and xn+1 =
2xnxn−1 − xn−2 for n ≥ 2. Prove that, if xN = 0 for some N , then the sequence is periodic. (Hint: Show that we must
have |a| ≤ 1 and show that xn = cos(ynb)).
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1.3 Courant-Fischer min-max theorem

Theorem 3. Let A be a real symmetric matrix and note λ1, λ2, . . . , λn its eigenvalues. Then we have

λk = min
dimS=n−k+1

(
max
x∈S

〈Ax, x〉
〈x, x〉

)
In particular we have that

λmin ≤
〈Ax, x〉
〈x, x〉

≤ λmax,

where the left and right inequalities are obtained exactly when x is an eigenvector corresponding to λmin and λmax,
respectively (prove it as an exercise).

Problem 7 (OBM 2004). Let X be a real invertible n × n matrix and XT its transposed. Let λ1, λ2, . . . , λn ≥ 0 the

eigenvalues of XTX. We define the norm of X by ‖X‖ =
√
λ1 and the dilation factor of A by d(X) =

√
λ1

λ2
. Show that,

for any A and B invertible, d(AB) ≥ ‖AB‖
‖A‖‖B‖d(B).

Problem 8. Prove the eigenvalue stability inequality |λi(A+B)− λi(A)| ≤ ‖B‖op, where we define the norm ‖M‖op =
sup|x|=1 |Mx|.

Problem 9 (Berkeley 1992). Let A be a real symmetric n × n matrix with non-negative entries. Prove that A has an
eigenvector with non-negative entries.

2 Polar Decomposition

Any complex number z = a+ bi can be put in the polar form z = reiϕ, where r ≥ 0 and |eiϕ| = 1. Here we will see the
generalization of this fact to square matrices, where a symmetric matrix takes the role of the r and a unitary matrix acts
as the phase factor.

Theorem 4. Any square matrix A over R (or C) can be represented in the form A = SU , where S is a symmetric
(Hermitian) non-negative definite matrix and U is an orthogonal (unitary) matrix. If A is invertible such a representation
is unique.

Problem 10. Prove that S is always uniquely defined, S =
√
AA∗.

Problem 11. Prove that any square matrix can be decomposed as A = U ′S′, where S′ is a symmetric non-negative
definite matrix and U ′ is an orthogonal (unitary) matrix. (Note that we don’t have (in general) U ′ = U and S′ = S.)

Problem 12. Prove that if A is invertible and A = S1U1 = U2S2, where Si are symmetric and Ui are unitary, then
U1 = U2.

Problem 13. Prove that if the polar decomposition of a square matrix A is unique then A must be invertible.

Problem 14. Prove that if U is a unitary matrix and S ≥ 0, then |tr(US)| ≤ trS and if A is invertible, then U = eiϕI,
for some ϕ ∈ R.

Problem 15. Let A = SU be the polar decomposition of A and W a unitary matrix. Then ‖A− U‖2 ≤ ‖A−W‖2 and
if A is invertible, then the equality is only attained for W = U (Use the result from Problem 14 above). We recall that
the L2 euclidean norm of a matrix A is ‖A‖2 =

√
tr(A∗A).

Problem 16. Prove that if A is a normal operator (that is, AA∗ = A∗A) and A = SU is its polar decomposition then
SU = US.

2.1 Singular value decomposition

The matrix S in the polar decomposition, being itself a symmetric matrix, can be further decomposed as S = PDP ∗

using the spectral theorem. Since S ≥ 0, it follows that the eigenvalues in the diagonal matrix D are non-negative. This
way, there exists two orthogonal (unitary) matrices P and Q such that A can be ”almost diagonalized” as A = PDQ.
The elements in the diagonal D are called the singular values of A, and this is called the singular value decomposition.

Problem 17. If A is an n × n normal matrix, show that the singular values σ1(A), . . . , σn(A) of A are the absolute
values of its eigenvalues: |λ1(A)|, . . . , |λn(A)|.

Problem 18. Prove the Courant-Fischer min-max formula for singular values:

σi(A) = inf
dim(S)=n−i+1

(
sup
x∈S

|Av|
|v|

)
for all 1 ≤ i ≤ p, where the supremum ranges over all subspaces of Cn of dimension i.
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