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1 Spectral theorem and diagonalization

Theorem 1. Let A be a real, symmetric matriz (or, in the complex case, a self-adjoint matriz). Then there exist D a
real diagonal matriz and P an orthogonal (unitary) matriz such that A = PDP*.

Theorem 2. If A is an n X n matriz with n distinct eigenvalues, then A is diagonalizable.

1.1 Powers of matrices

The idea here is to take advantage of the fact that if a matrix A can be written as PDP~! then its powers are given by
AF = PDFP~1, the powers of a diagonal matrices being easy to compute.

Problem 1. Let T be an N x N real symmetric matrixz. Show that

lim 7" =0

n—00

if and only if all the eigenvalues of T have absolute value less than 1.

Solution: ( <) Diagonalizing T with the spectral theorem leads T = PDP* = T™ = PD"P*. Notating by \;
the eigenvalues of T, we have

N
T = Pu(D")ul;
k=1

N
= ZRk(Dn)kkP]:j

k=1
N
= E szPI:jAE
k=1

This way, if |Agx| < 1, then Py P AL — 0 and thus T7; — 0.
( = ) We invert the diagonalization as D™ = P*T™P, where we have used that P is an unitary matrix
(PP* = P*P = I). This implies that
N
AP = Dy = Z P TV Py;.
k=1

Thus if lim,,—, o T}% = 0, then lim,,_, o, A = 0, which implies |\;| < 1.

Problem 2 (Berkeley 1990). Let A be a real symmetric n x n matriz that is positive definite. Let y € RN, y # 0. Prove

that the limit
i yT Am+1y
im

m— 00 yTAmy

exists and is an eigenvalue of A.

Solution: Notice that yZ A™+1y = (y, A™*1y) and thus the limit we want to evaluate can be rewritten as




By the spectral theorem there exist a diagonal matrix D and a unitary matrix P such that A = P*DP. Using
that (Ax,x) = (x, A*x), this quotient can be rewritten as

(y, P*D™ ' Py) _ (Py,D"™'Py)  (2,D™"'z)

(y, P*D™Py) — (Py,D™Py) — (z,D™z) "’

where we define z = Py. Expanding the inner products we find that this equals
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where the \;s are the eigenvalues of the matrix A. Let Ay; be the greatest eigenvalue.
The numerator behaves as A7t and the denominator as A7. Indeed, the above fraction equals
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Terminar...

1.2 Linear recurrences
A linear recurrence with constant coefficients
An+2 = aAnJrl + bAn

can be transformed into a linear system by introducing the artificial sequence B, 12 = 4,1, giving

A7L+2 = aAn—i—l + an+1 (An+2) _ (a b) <An+1>
— =
Bn+2 = An+1 Bn+2 10 Bn+1
Problem 3. Show that if a® + 4b > 0 there exist constants «, 3 such that the solution to the linear recurrence above is

given by
Ap = aX] + (A7,

where \1 and X2 are the eigenvalues of some matriz.

Problem 4. Prove the Binet formula for the Fibonacci sequence 0,1,1,2,...:
oL (14v5) 1 (1Y
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Solution: Here we come exactly to the case of the previous question. The matrix of the system is

1 1
1 0/’
15 4nd Ao = 1=

with characteristic polynomial A2 — A — 1 = 0, we find that the eigenvalues are A\; = 5
It remains just to find the values of the constants a and 3, which can be done by substituting the initial cases
Fy=0and F} = 1.
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Problem 5. Find all sequences satisfying fnio = 5fni1 +6fn +27

Solution: To get rid of the 2™ term, note that the recurrence relation for the n 4+ 1 term of the sequence is written

as
fat1 =5fn 4 6fa1 +2"1 = 2fn11 =52f, +62f,_1 +2"

Thus, subtracting this one from the original equation leads

frt2 = 2fnt1 = 5(fng1 — 2fn) + 6(fn — 2fn—1)-

Define the auxiliary recurrent sequence g,4+1 = fn+1 — 2fn for every n > 0. The above equation is then stated as

gn+2 = 5gn+1 + 6gn




Since 52 + 4 % 6 > 0, we have by Problem 3 that the general solution to such a recurrence is given by

gn = a)\;rll + B>\37

where the \; are the eigenvalues of the matrix (51) g) , namely, 6 and -1.

By the definition of g, we have that
frnt1 —2fn = ab™ + B(—1)", for every n > 0.
This recurrence can be solved by summation. Indeed, writing all the recurrences decreasing order from n to 0:
f1 = 2fn = ab” + B(-1)"

fn = 2fn_1=ab" ' + 3(-1)
fro1—2fn—o=ab6""?+B(-1)

(_ n—1
(_ n—2
i—=2fo=a+p

The idea is to cancel the — f,, with the f,, on the equation below, then the f,,_1 with the f,,_s on the equation
below and so on. To do this, multiply the second equation by 2, the third one by 22 and so on such that the last
equation will be multiplied by 2™, and we have

fn1 —2fn = ab" + B(=1)"
2fn — 22fn—1 =2a6""" + 26(_1)n71
22fn71 _ 23fn72 — 22a6’n—2 + 225(_1)”—2

2N —2ntlfy = 2" 4274
Summing everything we have the desired cancellations and it follows that

fn+1 _2n+1f0 :a(6n+26n_1+226n_2++2n)+ﬁ((_1)n+2(_1)n_1 +22(_1)n—2++2n)

or
fog1 — 2" fo = a22i6n_i + 52 2/ (=)™
i=0 i=0
Problem 6 (Putnam 2018). Given a real number a, we define a sequence by xo = 1, x1 = 29 = a, and Tpy1 =

2y Tp—1 — Tp—2 for n > 2. Prove that, if iy = 0 for some N, then the sequence is periodic. (Hint: Show that we must
have |a] <1 and show that x, = cos(y,b)).

Solution: Let us first motivate the hint. Calculating the next two elements of this sequence we have that

x3:2a271

x4 = 4a® — 3a

and these formulas look a lot like the formulas for cos(2x) and cos(3z) as a function of cos(x). Thus it makes sense
to search for solutions of the form cos(y,b), for some sequence y,,.

Now, let us justify the substitution. Suppose |a| > 1. We can show by induction that |z,41| > |z,|. Thus in this
case we cannot have z,, = 0 for some n, meaning we must have |a| < 1.

Let b be such that a = cos(b). This way, we have y; = yo = 1, y3 = 2, y4 = 3. Constructing the rest of y, by
induction, if z,, = cos(ynb), Tn—1 = cos(yn—1b) and x,_o = cos(y,—_2b) we have

Znt1 = 2¢08(Ynb) cos(yn—_1b) — cos(yn—_ab)
= COS((yn + yn—l)b) + COS((yTL - yn—l)b) - Cos(yn—2b)~

Now we describe some heuristics to construct the y,, sequence. Intuitively, since we want 2,11 = cos(y,11b), one
of the cos must cancel the — cos(y,—2b). We have two options: either y, + ¥n—1 = Yn—2 OF Yn — Yn—1 = Yn—2-




The first recurrence doesn’t agree with the first values of y, that we calculated earlier. Thus we impose that

Yn —Yn—1 = Yn—2, and comparing with the first values we have calculated, we conclude that y,, is in fact the Fibonacci
sequence! This way, we have that z,1 = cos(yn+1b), as desired.

Now we prove the periodicity. Indeed, if )y = 0, then this implies ynyb = (k + %)Tf for some k. Thus z, =
cos( = (k + Dim).

1.3 Courant-Fischer min-max theorem

Theorem 3. Let A be a real symmetric matriz and note A1, Aa, ..., A\, its eigenvalues. Then we have

W)

min max
dim S=n—k+1 \ z€S <.’17,$>

Ak

In particular we have that

(Az, )

)\min =

(x, )

where the left and right inequalities are obtained exactly when z is an eigenvector corresponding to Anin and Apaz,
respectively (prove it as an exercise).
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Problem 7 (OBM 2004). Let X be a real invertible n x n matriz and X7 its transposed. Let A1, Ao, ..., Ay > 0 the

eigenvalues of XTX. We define the norm of X by || X|| = /A1 and the dilation factor of A by d(X) = 1/%. Show that,

for any A and B invertible, d(AB) > %d(B).

Solution: For a matrix X with real eigenvalues, we will notate A (X) > Ay(X) > --- > A, (X) all of its eigenvalues.
The norm defined in the statement of the problem then is written as || X|| = /A1 (XTX). Also, the dilation factor

is written as d(X) = ,/%.

Using these definitions,

1AB| s ABE
d(AB) > 22N gpy o qaB)? > 20 g
(4B) 2 1B B) < NHEER

. M((AB)T(AB) _ M((AB)T(AB)) X(BTB)
>((AB)T(AB)) = M(ATA)M (BT B) Ao(BTB)
1 1
@ M((AB)T(AB)) = M(ATA)N(BTB)
& M((AB)T(AB)) < M (AT A)a(BTB)

and we just have to prove this last inequality.
By Courant-Fischer,

Y

(B (AB) = | min | (max (42) 250220 )

. ( (ABz, ABx) >
= min max ~—————+
dim S=n—1 \ z€S (z, )

= min ma; ”AwH%
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Az} |ABa|3 B3 _  |AB|3 B3
S elz T 2 \BalR wlR ) T R [Bal wES a2
zes |z||3 ze x|z |z||5 ze x| wzes |z||3

Note that since B is invertible, a reparametrization in the max implies

|ABz|3 _ JABsl3 _|As]3

25 ||Bal2 T sekr Bz | werr [z

(note this last equality wouldn’t be possible if the max was taken only over S). Hence we have

[Az(3 _  lAzl3 1Bz
ves |zl3 T wes |zf3 wes a3




In a similar way as before we have, by Courant-Fischer, that

Ax||3 Bz||3
2llz and \y(BTB) = . rélin | nax ”” IHQQ,
im S=n—1 z€ alp

I
M (AT A) = max
zern ||z|3

and this implies

Ax||3 Bz||3
” x|2|2 < A (AT A) - max ” x|2|2.
ves |2 ves |xl3

Taking the minimum over all subspaces S with dimension n — 1 leads, by Courant-Fischer,
X2 ((AB)"(AB)) < A (AT A)X2(B" B)

which is equivalent to the inequality that we wanted.

Problem 8. Prove the eigenvalue stability inequality |A\;(A + B) — Ai(A)| < ||Bllop, where we define the norm ||M||op =
SUp|g=1 | Mz|.

Solution: We have that

But, by Cauchy-Schwarz inequality, we have that

(Bw,x) _ |Ballr| _ |Br| _
@a) =~ WP T T

x
B — )| <max|Bz| = ||B|l,
‘ (le)‘ \zlzll = 15ler

Thus,
((A+ B)z, ) (Az, )

oS (x,x) = 0es (x,x)

+ 1 Bllop
and taking the minimum over all subspaces S with dimension n — i 4+ 1 leads, by Courant-Fischer,
Ai(A+ B) < Xi(A) + [|Bllop
For the other inequality, it suffices do choose A + B in the place of A and —B in place of B. We then have
Ai((A+ B)+(=B)) < Ai(A+ B) + || = Bllop = Ai(A+ B) = Ai(4) — [ Bllop

and the inequality is shown.

Problem 9 (Berkeley 1992). Let A be a real symmetric n X n matriz with non-negative entries. Prove that A has an
etgenvector with non-negative entries.

Solution: Let A4, be the maximum eigenvalue for this matrix and let v = (v1,vs, ..., v,) be such that Av = Az v.
Consider the vector |v| = (|v1], |va],. .., |vn]). Since A has non-negative entries, it follows that

(Ao, [o]) — Xg= Aigluillvgl 35— Agviv; — (Av, v)

(ol [ol) Ivl13 - llz —  {v0)

However, as Av = A\,q2v, we have the saturation in Courant-Fischer:

(Av,v)
(v,0)

thus we have

(Al ol)
(Jol, Jol) = 7"

but since the Rayleigh coefficient is always less than \,,4,, we have equality in the inequality above. This in turn

implies that |v| must be an eigenvector associated with the eigenvalue \,qz-




2 Polar Decomposition

Any complex number z = a + bi can be put in the polar form z = re??, where r > 0 and |e¢| = 1. Here we will see the
generalization of this fact to square matrices, where a symmetric matrix takes the role of the r and a unitary matrix acts
as the phase factor.

Theorem 4. Any square matriz A over R (or C) can be represented in the form A = SU, where S is a symmelric
(Hermitian) non-negative definite matriz and U is an orthogonal (unitary) matriz. If A is invertible such a representation
1S unique.

Problem 10. Prove that S is always uniquely defined, S = AA*.

Solution: If A = SU then we have that A* = U*S* = U*S. Thus AA* = SUU*S = S2, since U is unitary. Now it
suffices to take the matrix square root on both sides, which is a well defined operation in this case, since S > 0.

Problem 11. Prove that any square matriz can be decomposed as A = U'S’, where S’ is a symmetric non-negative
definite matriz and U’ is an orthogonal (unitary) matriz. (Note that we don’t have (in general) U' = U and S’ = S.)

Solution: Take the polar decomposition of the conjugate matrix A* = SV, where S > 0 is a symmetric and V is
unitary. Now, taking the hermitian conjugation on both sides of the equation leads A = V*S* = V*§ and it suffices
to take U = V'*.

Problem 12. Prove that if A is invertible and A = S1U; = UySs, where S; are symmetric and U; are unitary, then
U, =Us.

Solution: ”Insert and remove” an unitary matrix on the right-hand side of the first equation: A = S,U; =
UlUfSlUl = Ul(Ul*SlUl) This way we have UQSQ = Ul(UfslUl)
Since A is invertible and UfS1U; > 0, it follows by uniqueness of the polar decomposition that

U1 = U2 and Sg = Ul*SlUl

Problem 13. Prove that if the polar decomposition of a square matriz A is unique then A must be invertible.

Solution: Let us prove the converse statement, that is, if A is not invertible then it’s polar decomposition cannot
be unique. If A is not invertible, this implies there exists a v such that Av = 0, that is, there’s a direction v that is
totally killed by A.

What this implies is that any linear transformation that affects only v will not change A. This way, let H be the
reflection on the direction v, that is, a linear transformation such that Hv = —v and Hw = w for any w € v*. As
every reflection, the map H is an unitary application, for it is an isometry ||Hv|| = ||v||-

Now we show rigorously that applying H won’t change A. Every x can be decomposed as © = Av + w, where v
and w are as above. We have AHx = AMAHv + AHw = —AAv + Aw = Aw = Mv + Aw = Ax.

Take A = SU a polar decomposition of A. We have that A = AH = SUH = S(UH), and thus this decomposition
is not unique.

Problem 14. Prove that if U is a unitary matriz and S > 0, then [tr(US)| < trS and if A is invertible, then the equality
holds only when U = €¢I, for some ¢ € R.

Solution: Let S = VDV* with D = diag(A,...,\,) and V an unitary matrix.

tr(US) =tr(UV*DV) = tr(VUV*D) = tr(WD),
where we have defined W = VUV™, an unitary matrix. This way

i=1 i,j=1 i=1
i=1

i=1




and the desired inequality is proven.
For the equality case, since A is invertible, we have that S > 0 and thus A; > 0. Then,

zn:wii)\i = zn: |wii|)\i = zn:&v
i=1 i=1

i=1

The last equality is an equality case for the convex combination |wy1|A1 4+ -+ + [Wpn| A < A1 + -+ + A, (remember
that since W is unitary, we have |w;i| < 1), which can only happen if |w;;| = 1 for every i. Since W is an unitary
matrix, each column of W has to be a norm 1 vector, thus we deduce that W must be a diagonal matrix.

Also, the first equality above is the equality case for the triangular inequality, which implies there exist a; > 0
such that w;; A; = a;wy11 A1 Vi or simply that there exists a 3; > 0 such that w;i = B;wq1 Vi.

Taking the norms we deduce that 5; = 1 and thus the w;; are all equal. Let ¢ € R be such that wy; = e¥. We
have that W = e**], and thus U = e**1, as desired.

Problem 15. Let A = SU be the polar decomposition of A and W a unitary matriz. Then ||[A —Ulla < ||4A — W2 and
if A is invertible, then the equality is only attained for W = U (Use the result from Problem 14 above). We recall that
the L? euclidean norm of a matriz A is ||A|ls = \/tr(A*A).

Solution: Note that if U is a unitary matrix, then
IAUI = tr((U*A"A)U) = tr(U(U* A" 4)) = tr(A"A) = ||A|3,

that is, unitary matrices preserve this norm.
If A= SU is the polar decomposition of A, then

[A=Wll2 = [[SU =Wy = [[SUU* = WU ||z = [|S = WU"[]2 = [|S = V]2

where we define V = WU™*, a unitary matrix.
On the other hand, by the definition of the norm,

IS = V|2 =tr((S = V)(S = V*)) = tr(S% — SV* = VS + VV*) = tr(S2) — tr(SV* + VS) + tr(I).

Using the result from problem 18, we have that |tr(SV)| < trS (and [tr(V*S)| < ¢S by taking the hermitian
adjoint), thus
IS = VI3 < tr(S?) = 2tr(S) + tr(I) = tr((S — I)*) = |S — 13-

If A is invertible, then S is also invertible and the equality ||S — V|2 = ||S — I||2 implies we have the equality
[tr(SV)| = trS, which we know is only possible when V = e*1.
On the other hand, this equality also implies

2tr(S) = tr(SV* +VS) = 2tr(S) = e tr(S) + e“tr(S)

Since S is invertible, we have that tr(S) > 0. This way, cosp = 1 = ¢ = 2knw and then V = I, which finally
implies W =U.

Problem 16. Prove that if A is a normal operator (that is, AA* = A*A) and A = SU is its polar decomposition then
SU=US.

Solution: SU(SU)* = AA* = A*A = (SU)*SU Thus, SUU*S* = U*S*SU Thus, S? = U*S?U. Since S > 0, we
have that S = /52, thus taking the matrix square root on both sides of this last equation leads the result.

2.1 Singular value decomposition

The matrix S in the polar decomposition, being itself a symmetric matrix, can be further decomposed as S = PDP*
using the spectral theorem. Since S > 0, it follows that the eigenvalues in the diagonal matrix D are non-negative. This
way, there exists two orthogonal (unitary) matrices P and @ such that A can be ”almost diagonalized” as A = PDQ.
The elements in the diagonal D are called the singular values of A, and this is called the singular value decomposition.

Problem 17. If A is an n X n normal matriz, show that the singular values o1(A),...,0,(A) of A are the absolute
values of its eigenvalues: |A\1(A)l, ..., | A (A)].



Problem 18. Prove the Courant-Fischer min-max formula for singular values:

A
sy =, ot (sw )
dim(S)=n—i+1 \zecs |V]

for all 1 < i < p, where the supremum ranges over all subspaces of C" of dimension i.



