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1 Spectral theorem and diagonalization

Theorem 1. Let A be a real, symmetric matrix (or, in the complex case, a self-adjoint matrix). Then there exist D a
real diagonal matrix and P an orthogonal (unitary) matrix such that A = PDP ∗.

Theorem 2. If A is an n× n matrix with n distinct eigenvalues, then A is diagonalizable.

1.1 Powers of matrices

The idea here is to take advantage of the fact that if a matrix A can be written as PDP−1 then its powers are given by
Ak = PDkP−1, the powers of a diagonal matrices being easy to compute.

Problem 1. Let T be an N ×N real symmetric matrix. Show that

lim
n→∞

Tn = 0

if and only if all the eigenvalues of T have absolute value less than 1.

Solution: ( ⇐= ) Diagonalizing T with the spectral theorem leads T = PDP ∗ =⇒ Tn = PDnP ∗. Notating by λi

the eigenvalues of T , we have

Tn
ij =

N∑
k,l=1

Pik(D
n)klP

∗
lj

=

N∑
k=1

Pik(D
n)kkP

∗
kj

=

N∑
k=1

PikP
∗
kjλ

n
k

This way, if |λk| < 1, then PikP
∗
kjλ

n
k → 0 and thus Tn

ij → 0.
( =⇒ ) We invert the diagonalization as Dn = P ∗TnP , where we have used that P is an unitary matrix

(PP ∗ = P ∗P = I). This implies that

λn
i = Dii

n =

N∑
k,l=1

P ∗
ikT

n
klPli.

Thus if limn→∞ Tn
kl = 0, then limn→∞ λn

i = 0, which implies |λi| < 1.

Problem 2 (Berkeley 1990). Let A be a real symmetric n× n matrix that is positive definite. Let y ∈ RN , y ̸= 0. Prove
that the limit

lim
m→∞

yTAm+1y

yTAmy

exists and is an eigenvalue of A.

Solution: Notice that yTAm+1y = ⟨y,Am+1y⟩ and thus the limit we want to evaluate can be rewritten as

lim
m→∞

⟨y,Am+1y⟩
⟨y,Amy⟩

.
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By the spectral theorem there exist a diagonal matrix D and a unitary matrix P such that A = P ∗DP . Using
that ⟨Ax, x⟩ = ⟨x,A∗x⟩, this quotient can be rewritten as

⟨y, P ∗Dm+1Py⟩
⟨y, P ∗DmPy⟩

=
⟨Py,Dm+1Py⟩
⟨Py,DmPy⟩

=
⟨z,Dm+1z⟩
⟨z,Dmz⟩

,

where we define z = Py. Expanding the inner products we find that this equals∑N
i=1 λ

m+1
i z2i∑N

i=1 λ
m
i z2i

,

where the λis are the eigenvalues of the matrix A. Let λM be the greatest eigenvalue.
The numerator behaves as λm+1

M and the denominator as λm
M . Indeed, the above fraction equals

λm+1
M

∑N
i=1(

λi

λM
)m+1z2i

λm
M

∑N
i=1(

λi

λM
)mz2i

= λM

∑N
i=1(

λi

λM
)m+1z2i∑N

i=1(
λi

λM
)mz2i

= λM

z2M +
∑

i ̸=M ( λi

λM
)m+1z2i

z2M +
∑

i ̸=M ( λi

λM
)mz2i

Terminar...

1.2 Linear recurrences

A linear recurrence with constant coefficients

An+2 = aAn+1 + bAn

can be transformed into a linear system by introducing the artificial sequence Bn+2 = An+1, giving{
An+2 = aAn+1 + bBn+1

Bn+2 = An+1

=⇒
(
An+2

Bn+2

)
=

(
a b
1 0

)(
An+1

Bn+1

)
Problem 3. Show that if a2 + 4b > 0 there exist constants α, β such that the solution to the linear recurrence above is
given by

An = αλn
1 + βλn

2 ,

where λ1 and λ2 are the eigenvalues of some matrix.

Problem 4. Prove the Binet formula for the Fibonacci sequence 0, 1, 1, 2, . . . :

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

.

Solution: Here we come exactly to the case of the previous question. The matrix of the system is(
1 1
1 0

)
,

with characteristic polynomial λ2 − λ− 1 = 0, we find that the eigenvalues are λ1 = 1+
√
5

2 and λ2 = 1−
√
5

2 .
It remains just to find the values of the constants α and β, which can be done by substituting the initial cases

F0 = 0 and F1 = 1.

Problem 5. Find all sequences satisfying fn+2 = 5fn+1 + 6fn + 2n

Solution: To get rid of the 2n term, note that the recurrence relation for the n+ 1 term of the sequence is written
as

fn+1 = 5fn + 6fn−1 + 2n−1 =⇒ 2fn+1 = 52fn + 62fn−1 + 2n

Thus, subtracting this one from the original equation leads

fn+2 − 2fn+1 = 5(fn+1 − 2fn) + 6(fn − 2fn−1).

Define the auxiliary recurrent sequence gn+1 = fn+1 − 2fn for every n ≥ 0. The above equation is then stated as

gn+2 = 5gn+1 + 6gn.

2



Since 52 + 4 ∗ 6 > 0, we have by Problem 3 that the general solution to such a recurrence is given by

gn = αλn
1 + βλn

2 ,

where the λi are the eigenvalues of the matrix

(
5 6
1 0

)
, namely, 6 and -1.

By the definition of g, we have that

fn+1 − 2fn = α6n + β(−1)n, for every n ≥ 0.

This recurrence can be solved by summation. Indeed, writing all the recurrences decreasing order from n to 0:

fn+1 − 2fn = α6n + β(−1)n

fn − 2fn−1 = α6n−1 + β(−1)n−1

fn−1 − 2fn−2 = α6n−2 + β(−1)n−2

...

f1 − 2f0 = α+ β

The idea is to cancel the −fn with the fn on the equation below, then the fn−1 with the fn−2 on the equation
below and so on. To do this, multiply the second equation by 2, the third one by 22 and so on such that the last
equation will be multiplied by 2n, and we have

fn+1 − 2fn = α6n + β(−1)n

2fn − 22fn−1 = 2α6n−1 + 2β(−1)n−1

22fn−1 − 23fn−2 = 22α6n−2 + 22β(−1)n−2

...

2nf1 − 2n+1f0 = 2nα+ 2nβ

Summing everything we have the desired cancellations and it follows that

fn+1 − 2n+1f0 = α(6n + 2 · 6n−1 + 22 · 6n−2 + · · ·+ 2n) + β((−1)n + 2 · (−1)n−1 + 22 · (−1)n−2 + · · ·+ 2n)

or

fn+1 − 2n+1f0 = α

n∑
i=0

2i6n−i + β

n∑
i=0

2i(−1)n−i

Problem 6 (Putnam 2018). Given a real number a, we define a sequence by x0 = 1, x1 = x2 = a, and xn+1 =
2xnxn−1 − xn−2 for n ≥ 2. Prove that, if xN = 0 for some N , then the sequence is periodic. (Hint: Show that we must
have |a| ≤ 1 and show that xn = cos(ynb)).

Solution: Let us first motivate the hint. Calculating the next two elements of this sequence we have that

x3 = 2a2 − 1

x4 = 4a3 − 3a

and these formulas look a lot like the formulas for cos(2x) and cos(3x) as a function of cos(x). Thus it makes sense
to search for solutions of the form cos(ynb), for some sequence yn.

Now, let us justify the substitution. Suppose |a| > 1. We can show by induction that |xn+1| ≥ |xn|. Thus in this
case we cannot have xn = 0 for some n, meaning we must have |a| ≤ 1.

Let b be such that a = cos(b). This way, we have y1 = y2 = 1, y3 = 2, y4 = 3. Constructing the rest of yn by
induction, if xn = cos(ynb), xn−1 = cos(yn−1b) and xn−2 = cos(yn−2b) we have

xn+1 = 2 cos(ynb) cos(yn−1b)− cos(yn−2b)

= cos((yn + yn−1)b) + cos((yn − yn−1)b)− cos(yn−2b).

Now we describe some heuristics to construct the yn sequence. Intuitively, since we want xn+1 = cos(yn+1b), one
of the cos must cancel the − cos(yn−2b). We have two options: either yn + yn−1 = yn−2 or yn − yn−1 = yn−2.
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The first recurrence doesn’t agree with the first values of yn that we calculated earlier. Thus we impose that
yn−yn−1 = yn−2, and comparing with the first values we have calculated, we conclude that yn is in fact the Fibonacci
sequence! This way, we have that xn+1 = cos(yn+1b), as desired.

Now we prove the periodicity. Indeed, if xN = 0, then this implies yNb = (k + 1
2 )π for some k. Thus xn =

cos( yn

yN
(k + 1

2 )π).

1.3 Courant-Fischer min-max theorem

Theorem 3. Let A be a real symmetric matrix and note λ1, λ2, . . . , λn its eigenvalues. Then we have

λk = min
dimS=n−k+1

(
max
x∈S

⟨Ax, x⟩
⟨x, x⟩

)
In particular we have that

λmin ≤ ⟨Ax, x⟩
⟨x, x⟩

≤ λmax,

where the left and right inequalities are obtained exactly when x is an eigenvector corresponding to λmin and λmax,
respectively (prove it as an exercise).

Problem 7 (OBM 2004). Let X be a real invertible n × n matrix and XT its transposed. Let λ1, λ2, . . . , λn ≥ 0 the

eigenvalues of XTX. We define the norm of X by ∥X∥ =
√
λ1 and the dilation factor of A by d(X) =

√
λ1

λ2
. Show that,

for any A and B invertible, d(AB) ≥ ∥AB∥
∥A∥∥B∥d(B).

Solution: For a matrix X with real eigenvalues, we will notate λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X) all of its eigenvalues.
The norm defined in the statement of the problem then is written as ∥X∥ =

√
λ1(XTX). Also, the dilation factor

is written as d(X) =
√

λ1(XTX)
λ2(XTX)

.

Using these definitions,

d(AB) ≥ ∥AB∥
∥A∥∥B∥

d(B) ⇔ d(AB)2 ≥ ∥AB∥2

∥A∥2∥B∥2
d(B)2

⇔ λ1((AB)T (AB))

λ2((AB)T (AB))
≥ λ1((AB)T (AB))

λ1(ATA)λ1(BTB)

λ1(B
TB)

λ2(BTB)

⇔ 1

λ2((AB)T (AB))
≥ 1

λ1(ATA)λ2(BTB)

⇔ λ2((AB)T (AB)) ≤ λ1(A
TA)λ2(B

TB)

and we just have to prove this last inequality.
By Courant-Fischer,

λ2((AB)T (AB)) = min
dimS=n−1

(
max
x∈S

⟨(AB)TABx, x⟩
⟨x, x⟩

)
= min

dimS=n−1

(
max
x∈S

⟨ABx,ABx⟩
⟨x, x⟩

)
= min

dimS=n−1

(
max
x∈S

∥Ax∥22
∥x∥22

)

But

max
x∈S

∥Ax∥22
∥x∥22

= max
x∈S

(
∥ABx∥22
∥Bx∥22

∥Bx∥22
∥x∥22

)
≤ max

x∈S

∥ABx∥22
∥Bx∥22

·max
x∈S

∥Bx∥22
∥x∥22

Note that since B is invertible, a reparametrization in the max implies

max
x∈S

∥ABx∥22
∥Bx∥22

≤ max
x∈Rn

∥ABx∥22
∥Bx∥22

= max
x∈Rn

∥Ax∥22
∥x∥22

(note this last equality wouldn’t be possible if the max was taken only over S). Hence we have

max
x∈S

∥Ax∥22
∥x∥22

≤ max
x∈S

∥Ax∥22
∥x∥22

·max
x∈S

∥Bx∥22
∥x∥22

.
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In a similar way as before we have, by Courant-Fischer, that

λ1(A
TA) = max

x∈Rn

∥Ax∥22
∥x∥22

and λ2(B
TB) = min

dimS=n−1
max
x∈S

∥Bx∥22
∥x∥22

,

and this implies

max
x∈S

∥Ax∥22
∥x∥22

≤ λ1(A
TA) ·max

x∈S

∥Bx∥22
∥x∥22

.

Taking the minimum over all subspaces S with dimension n− 1 leads, by Courant-Fischer,

λ2((AB)T (AB)) ≤ λ1(A
TA)λ2(B

TB)

which is equivalent to the inequality that we wanted.

Problem 8. Prove the eigenvalue stability inequality |λi(A+B)− λi(A)| ≤ ∥B∥op, where we define the norm ∥M∥op =
sup|x|=1 |Mx|.

Solution: We have that

max
x∈S

⟨(A+B)x, x⟩
⟨x, x⟩

≤ max
x∈S

⟨Ax, x⟩
⟨x, x⟩

+max
x∈S

⟨Bx, x⟩
⟨x, x⟩

But, by Cauchy-Schwarz inequality, we have that

⟨Bx, x⟩
⟨x, x⟩

≤ |Bx||x|
|x|2

=
|Bx|
|x|

=

∣∣∣∣B( x

|x|

)∣∣∣∣ ≤ max
|x|=1

|Bx| = ∥B∥op

Thus,

max
x∈S

⟨(A+B)x, x⟩
⟨x, x⟩

≤ max
x∈S

⟨Ax, x⟩
⟨x, x⟩

+ ∥B∥op

and taking the minimum over all subspaces S with dimension n− i+ 1 leads, by Courant-Fischer,

λi(A+B) ≤ λi(A) + ∥B∥op

For the other inequality, it suffices do choose A+B in the place of A and −B in place of B. We then have

λi((A+B) + (−B)) ≤ λi(A+B) + ∥ −B∥op =⇒ λi(A+B) ≥ λi(A)− ∥B∥op

and the inequality is shown.

Problem 9 (Berkeley 1992). Let A be a real symmetric n × n matrix with non-negative entries. Prove that A has an
eigenvector with non-negative entries.

Solution: Let λmax be the maximum eigenvalue for this matrix and let v = (v1, v2, . . . , vn) be such that Av = λmaxv.
Consider the vector |v| ≡ (|v1|, |v2|, . . . , |vn|). Since A has non-negative entries, it follows that

⟨A|v|, |v|⟩
⟨|v|, |v|⟩

=

∑n
ij=1 Aij |vi||vj |

∥|v|∥22
≥
∑n

ij=1 Aijvivj

∥v∥22
=

⟨Av, v⟩
⟨v, v⟩

.

However, as Av = λmaxv, we have the saturation in Courant-Fischer:

⟨Av, v⟩
⟨v, v⟩

thus we have
⟨A|v|, |v|⟩
⟨|v|, |v|⟩

≥ λmax,

but since the Rayleigh coefficient is always less than λmax, we have equality in the inequality above. This in turn
implies that |v| must be an eigenvector associated with the eigenvalue λmax.
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2 Polar Decomposition

Any complex number z = a+ bi can be put in the polar form z = reiφ, where r ≥ 0 and |eiφ| = 1. Here we will see the
generalization of this fact to square matrices, where a symmetric matrix takes the role of the r and a unitary matrix acts
as the phase factor.

Theorem 4. Any square matrix A over R (or C) can be represented in the form A = SU , where S is a symmetric
(Hermitian) non-negative definite matrix and U is an orthogonal (unitary) matrix. If A is invertible such a representation
is unique.

Problem 10. Prove that S is always uniquely defined, S =
√
AA∗.

Solution: If A = SU then we have that A∗ = U∗S∗ = U∗S. Thus AA∗ = SUU∗S = S2, since U is unitary. Now it
suffices to take the matrix square root on both sides, which is a well defined operation in this case, since S ≥ 0.

Problem 11. Prove that any square matrix can be decomposed as A = U ′S′, where S′ is a symmetric non-negative
definite matrix and U ′ is an orthogonal (unitary) matrix. (Note that we don’t have (in general) U ′ = U and S′ = S.)

Solution: Take the polar decomposition of the conjugate matrix A∗ = SV , where S ≥ 0 is a symmetric and V is
unitary. Now, taking the hermitian conjugation on both sides of the equation leads A = V ∗S∗ = V ∗S and it suffices
to take U = V ∗.

Problem 12. Prove that if A is invertible and A = S1U1 = U2S2, where Si are symmetric and Ui are unitary, then
U1 = U2.

Solution: ”Insert and remove” an unitary matrix on the right-hand side of the first equation: A = S1U1 =
U1U

∗
1S1U1 = U1(U

∗
1S1U1). This way we have U2S2 = U1(U

∗
1S1U1).

Since A is invertible and U∗
1S1U1 ≥ 0, it follows by uniqueness of the polar decomposition that

U1 = U2 and S2 = U∗
1S1U1.

Problem 13. Prove that if the polar decomposition of a square matrix A is unique then A must be invertible.

Solution: Let us prove the converse statement, that is, if A is not invertible then it’s polar decomposition cannot
be unique. If A is not invertible, this implies there exists a v such that Av = 0, that is, there’s a direction v that is
totally killed by A.

What this implies is that any linear transformation that affects only v will not change A. This way, let H be the
reflection on the direction v, that is, a linear transformation such that Hv = −v and Hw = w for any w ∈ v⊥. As
every reflection, the map H is an unitary application, for it is an isometry ∥Hv∥ = ∥v∥.

Now we show rigorously that applying H won’t change A. Every x can be decomposed as x = λv + w, where v
and w are as above. We have AHx = λAHv +AHw = −λAv +Aw = Aw = λAv +Aw = Ax.

Take A = SU a polar decomposition of A. We have that A = AH = SUH = S(UH), and thus this decomposition
is not unique.

Problem 14. Prove that if U is a unitary matrix and S ≥ 0, then |tr(US)| ≤ trS and if A is invertible, then the equality
holds only when U = eiφI, for some φ ∈ R.

Solution: Let S = V DV ∗, with D = diag(λ1, . . . , λn) and V an unitary matrix.

tr(US) = tr(UV ∗DV ) = tr(V UV ∗D) = tr(WD),

where we have defined W = V UV ∗, an unitary matrix. This way

tr(US) =

n∑
i=1

(WD)ii =

n∑
i,j=1

WijDji =

n∑
i=1

Wiiλi

|tr(US)| ≤
n∑

i=1

|wii|λi ≤
n∑

i=1

λi = tr(S)
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and the desired inequality is proven.
For the equality case, since A is invertible, we have that S > 0 and thus λi > 0. Then,∣∣∣∣∣

n∑
i=1

wiiλi

∣∣∣∣∣ =
n∑

i=1

|wii|λi =

n∑
i=1

λi.

The last equality is an equality case for the convex combination |w11|λ1 + · · ·+ |wnn|λn ≤ λ1 + · · ·+ λn (remember
that since W is unitary, we have |wii| ≤ 1), which can only happen if |wii| = 1 for every i. Since W is an unitary
matrix, each column of W has to be a norm 1 vector, thus we deduce that W must be a diagonal matrix.

Also, the first equality above is the equality case for the triangular inequality, which implies there exist αi ≥ 0
such that wiiλi = αiw11λ1 ∀i or simply that there exists a βi ≥ 0 such that wii = βiw11 ∀i.

Taking the norms we deduce that βi = 1 and thus the wii are all equal. Let φ ∈ R be such that w11 = eiφ. We
have that W = eiφI, and thus U = eiφI, as desired.

Problem 15. Let A = SU be the polar decomposition of A and W a unitary matrix. Then ∥A− U∥2 ≤ ∥A−W∥2 and
if A is invertible, then the equality is only attained for W = U (Use the result from Problem 14 above). We recall that
the L2 euclidean norm of a matrix A is ∥A∥2 =

√
tr(A∗A).

Solution: Note that if U is a unitary matrix, then

∥AU∥22 = tr((U∗A∗A)U) = tr(U(U∗A∗A)) = tr(A∗A) = ∥A∥22,

that is, unitary matrices preserve this norm.
If A = SU is the polar decomposition of A, then

∥A−W∥2 = ∥SU −W∥2 = ∥SUU∗ −WU∗∥2 = ∥S −WU∗∥2 = ∥S − V ∥2

where we define V = WU∗, a unitary matrix.
On the other hand, by the definition of the norm,

∥S − V ∥22 = tr((S − V )(S − V ∗)) = tr(S2 − SV ∗ − V S + V V ∗) = tr(S2)− tr(SV ∗ + V S) + tr(I).

Using the result from problem 18, we have that |tr(SV )| ≤ trS (and |tr(V ∗S)| ≤ trS by taking the hermitian
adjoint), thus

∥S − V ∥22 ≤ tr(S2)− 2tr(S) + tr(I) = tr((S − I)2) = ∥S − I∥22.

If A is invertible, then S is also invertible and the equality ∥S − V ∥2 = ∥S − I∥2 implies we have the equality
|tr(SV )| = trS, which we know is only possible when V = eiφI.

On the other hand, this equality also implies

2tr(S) = tr(SV ∗ + V S) =⇒ 2tr(S) = e−iφtr(S) + eiφtr(S)

Since S is invertible, we have that tr(S) > 0. This way, cosφ = 1 =⇒ φ = 2kπ and then V = I, which finally
implies W = U .

Problem 16. Prove that if A is a normal operator (that is, AA∗ = A∗A) and A = SU is its polar decomposition then
SU = US.

Solution: SU(SU)∗ = AA∗ = A∗A = (SU)∗SU Thus, SUU∗S∗ = U∗S∗SU Thus, S2 = U∗S2U . Since S ≥ 0, we

have that S =
√
S2, thus taking the matrix square root on both sides of this last equation leads the result.

2.1 Singular value decomposition

The matrix S in the polar decomposition, being itself a symmetric matrix, can be further decomposed as S = PDP ∗

using the spectral theorem. Since S ≥ 0, it follows that the eigenvalues in the diagonal matrix D are non-negative. This
way, there exists two orthogonal (unitary) matrices P and Q such that A can be ”almost diagonalized” as A = PDQ.
The elements in the diagonal D are called the singular values of A, and this is called the singular value decomposition.

Problem 17. If A is an n × n normal matrix, show that the singular values σ1(A), . . . , σn(A) of A are the absolute
values of its eigenvalues: |λ1(A)|, . . . , |λn(A)|.
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Problem 18. Prove the Courant-Fischer min-max formula for singular values:

σi(A) = inf
dim(S)=n−i+1

(
sup
x∈S

|Av|
|v|

)
for all 1 ≤ i ≤ p, where the supremum ranges over all subspaces of Cn of dimension i.
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