Lecture 5

Paulo Sampaio (paulo-elpidio.alves-sampaio@polytechnique.edu)

March 28, 2024

1 Basic asymptotics of integrals

Problem 1. Find the asymptotic behavior as A — oo of
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Problem 2. Find the asymptotic behavior as A — oo of
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Problem 3. Prove that, as ¢ — 40,
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2 Laplace method

Problem 4. Find the asymptotics as A — +o0o of the following integrals:
1
@ [ =) (p>0)
0
—+ oo
o) [ s >0
0

/2
(c) / 2P cos™ x dx (p > —1).
0

Problem 5. Suppose that —oco < a < b < 400, the function ¢ is positive and decreasing on [a,b),
f; o(x) dz < 400, and p(a) — ¢(x) ~psaro C - (v — a) /P, where C,p > 0. Prove that
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In particular, ®(A) ~ 1/(AC) for p=1, and ®(A) ~ 5/7/(AC) for p=1/2.
Problem 6. Suppose that —oco < a < b < 400, the function ¢ is positive and decreasing on [a,b),

f; o(x) dr < 400, and limy_ 44 0(1 — @(x))/(x —a)*/? = +o0 for some p > 0. Prove that ff o (x) de =
0o(A7P) as A — +o0.

3 Asymptotics of unknown quantities

Problem 7. Let x, be the root of the equation x = tanz lying in the interval (mn,m(n + 1)),n € N.

Prove that
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4 Asymptotic of integrals of high dimension

Problem 8. Let P, be the normalized Lebesque measure on the sphere S"~1(y/n). Prove that the
coordinates on this sphere "are asymptotically distributed according to a mormal law”, that is, for any
a,beR, witha <b
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Problem 9. Prove that 1
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Problem 10. Prove that, for any f € C([0,1]),
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Problem 11. Prove that, for any f € C(R™) with sup|f| < oo,
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where 7y, is the standard Gaussian measure over R™, that is, the measure with density (27‘(’)_”/26_”96”2/2.



