Lecture 5

Paulo Sampaio (paulo-elpidio.alves-sampaio@polytechnique.edu)

March 28, 2024

1 Basic asymptotics of integrals

Problem 1. Find the asymptotic behavior as $A \to \infty$ of

$$\int_{A}^{2A} (\ln x)^{-1} dx$$

Problem 2. Find the asymptotic behavior as $A \to \infty$ of

$$\int_{1}^{+\infty} e^{-x^{p}/A} x^{-1} dx \ (p > 0)$$

Problem 3. Prove that, as $\varepsilon \to +0$.

(a)
$$\int_0^1 x^{\varepsilon x} dx = 1 - \frac{\varepsilon}{4} + \frac{\varepsilon^2}{27} + O(\varepsilon^3)$$

(b)
$$\int_0^1 e^{-\varepsilon/\sqrt{x}} dx = 1 - 2\varepsilon - \varepsilon^2 \ln \varepsilon + O(\varepsilon^2)$$

2 Laplace method

Problem 4. Find the asymptotics as $A \to +\infty$ of the following integrals:

(a)
$$\int_0^1 (1-x^p)^A dx \ (p>0)$$

(b)
$$\int_0^{+\infty} (1+x^p)^{-A} dx \ (p>0)$$

(c)
$$\int_0^{\pi/2} x^p \cos^A x \, dx \, (p > -1).$$

Problem 5. Suppose that $-\infty < a < b \le +\infty$, the function φ is positive and decreasing on [a,b), $\int_a^b \varphi(x) \ dx < +\infty$, and $\varphi(a) - \varphi(x) \sim_{x \to a+0} C \cdot (x-a)^{1/p}$, where C, p > 0. Prove that

$$\Phi(A) = \int_{a}^{b} \varphi^{A}(x) \ dx \sim_{A \to +\infty} \left(\frac{\varphi(a)}{AC}\right)^{p} \Gamma(1+p)\varphi^{A}(a).$$

In particular, $\Phi(A) \sim 1/(AC)$ for p = 1, and $\Phi(A) \sim \frac{1}{2} \sqrt{\pi/(AC)}$ for p = 1/2.

Problem 6. Suppose that $-\infty < a < b \le +\infty$, the function φ is positive and decreasing on [a,b), $\int_a^b \varphi(x) \ dx < +\infty$, and $\lim_{x\to a+0} (1-\varphi(x))/(x-a)^{1/p} = +\infty$ for some p>0. Prove that $\int_a^b \varphi^A(x) \ dx = o(A^{-p})$ as $A\to +\infty$.

3 Asymptotics of unknown quantities

Problem 7. Let x_n be the root of the equation $x = \tan x$ lying in the interval $(\pi n, \pi(n+1)), n \in \mathbb{N}$. Prove that

$$x_n = \pi n + \frac{\pi}{2} - \frac{1}{\pi n} + O\left(\frac{1}{n^2}\right).$$

4 Asymptotic of integrals of high dimension

Problem 8. Let P_n be the normalized Lebesgue measure on the sphere $S^{n-1}(\sqrt{n})$. Prove that the coordinates on this sphere "are asymptotically distributed according to a normal law", that is, for any $a, b \in \mathbb{R}$, with a < b

$$\lim_{n \to \infty} P_n\{(x_1, \dots, x_n) \in S^{n-1}(\sqrt{n}) | a < x_n < b\} = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-t^2/2} dt.$$

Problem 9. Prove that

$$\frac{1}{\sqrt{n}} \int_{[0,1]^n} \|x\| \ dx \to_{n \to \infty} \frac{1}{\sqrt{3}}$$

Problem 10. Prove that, for any $f \in C([0,1])$,

$$\int_{[0,1]^n} f(\sqrt[n]{x_1 \dots x_n}) \, dx \to f(e^{-1}).$$

Problem 11. Prove that, for any $f \in C(\mathbb{R}^n)$ with $\sup |f| < \infty$,

$$\int_{\mathbb{R}^n} f\left(\frac{|x_1| + \dots + |x_n|}{n}\right) d\gamma_n(x) \to f\left(\sqrt{\frac{2}{\pi}}\right),$$

where γ_n is the standard Gaussian measure over \mathbb{R}^n , that is, the measure with density $(2\pi)^{-n/2}e^{-\|x\|^2/2}$.