Lecture 6

Paulo Sampaio (paulo-elpidio.alves-sampaio@polytechnique.edu)

April 11, 2024

1 The Binet-Cauchy Formula

Problem 1. Let A and B be matrices of size $n \times m$ and $m \times n$, respectively, and $n \leq m$. Then

$$\det(AB) = \sum_{1 \le k_1 < k_2 < \dots < k_n \le m} \det(A_{k_1 \dots k_n}) \det(B^{k_1 \dots k_n}),$$

where $A_{k_1...k_n}$ is the sub-matrix obtained from the columns of A whose numbers are $k_1, ..., k_n$ and $B^{k_1...k_n}$ is the sub-matrix obtained from the rows of B whose numbers are $k_1, ..., k_n$.

2 Applications

2.1 Spanning trees enumeration

Problem 2 (Kirchhoff's matrix tree theorem). For a given connected graph G with n labeled vertices, let L be the Laplacian matrix of G and denote L[i] the matrix L with the ith row and column removed. Prove that the number of spanning trees of G is $\det L[i]$, for any admissible i.

Problem 3 (Cayley's formula). Prove that the number of trees on n labeled vertices is n^{n-2} .

2.2 Multiplicativity properties of compound matrix

For a matrix A of size $m \times n$ we can also consider the matrix whose elements are the r-th order minors, arranged in lexicographic order. For example, if A is a 3×3 matrix, then

$$C_2(A) = \begin{pmatrix} \det(A_{1,2}^{1,2}) & \det(A_{1,3}^{1,2}) & \det(A_{2,3}^{1,2}) \\ \det(A_{1,2}^{1,3}) & \det(A_{1,3}^{1,3}) & \det(A_{2,3}^{1,3}) \\ \det(A_{1,2}^{2,3}) & \det(A_{1,3}^{2,3}) & \det(A_{2,3}^{2,3}) \end{pmatrix}.$$

This $C_r(A)$ is called the r-th compound matrix of A.

Problem 4. Prove that $C_r(AB) = C_r(A)C_r(B)$.

Problem 5 (Jacobi's theorem). Let $A = (a_{ij})_{ij}$, $(\operatorname{adj} A)^T = (A_{ij})_{ij}$, $1 \leq p \leq n$, $\sigma = \begin{pmatrix} i_1 & \cdots & i_n \\ j_1 & \cdots & j_n \end{pmatrix}$ an arbitrary permutation. Prove that

$$\begin{pmatrix} A_{i_1j_1} & \dots & A_{i_1j_p} \\ \vdots & \dots & \vdots \\ A_{i_pj_1} & \dots & A_{i_pj_p} \end{pmatrix} = (-1)^{\sigma} \begin{vmatrix} a_{i_{p+1},j_{p+1}} & \dots & a_{i_{p+1},j_n} \\ \vdots & \dots & \vdots \\ a_{i_n,j_{p+1}} & \dots & a_{i_n,j_n} \end{vmatrix} \cdot |A|^{p-1}.$$

2.3 Smith normal form

Let A be a matrix whose elements are integers or polynomials and let $f_k(A)$ be the greatest common divisor of minors of order k of A. The formula for determinant expansion with respect to a row indicates that f_k is divisible by f_{k-1} .

Problem 6. If A' = BAC, where B and C are unity matrices, prove that $f_k(A') = f_k(A)$ for all admissible k.

Problem 7 (Smith normal form). Prove that, for any matrix A of size $m \times n$ there exist unity matrices B and C such that $BAC = diag(g_1, g_2, \ldots, g_p, 0, \ldots, 0)$, where g_{i+1} is divisible by g_i .

The matrix $diag(g_1, g_2, \ldots, g_p, 0, \ldots, 0)$ is called the Smith normal form of A.